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Abstract— Modern processors use two or more levels of 
cache memories to bridge the rising disparity between 
processor and memory speeds. Microprocessor 
designers have been torn between tight constraints on 
the amount of on-chip cache memory and the high 
latency of off-chip memory, such as dynamic random 
access memory. Accessing off-chip memory generally 
takes an order of magnitude more time than accessing 
on-chip cache, and two orders of magnitude more time 
than executing an instruction. Compression can 
improve cache performance by increasing effective 
cache capacity and eliminating misses. Computer 
systems and micro architecture researchers have 
proposed using hardware data compression units within 
the memory hierarchies of microprocessors in order to 
improve performance, energy efficiency, and 
functionality. However, most past work, and all work on 
cache compression, has made unsubstantiated 
assumptions about the performance, power 
consumption, and area overheads of the proposed 
compression algorithms and hardware .In this paper a 
lossless compression algorithm designed for fast on-line 
data compression, and cache compression in particular 
is proposed. The algorithm has a number of novel 
features tailored for this application, including 
combining pairs of compressed lines into one cache line 
and allowing parallel compression of multiple words 
while using a single dictionary and without degradation 
in compression ratio. The algorithm is proposed to a 
register transfer level hardware design, permitting 
performance, power consumption, and area estimation. 
The cache compression is evaluated using full-system 
simulation and a range of benchmarks. It can be shown 
that compression can improve performance for 
memory-intensive commercial workloads.  
 
Index Terms— Cache compression, effective system-
wide compression ratio, hardware implementation, pair 
matching, parallel compression. 
 

I. INTRODUCTION 
More time is essential to access off-chip memory time 

required to access generally takes an accessing on-chip 
cache. Hence to improve memory system efficiency cache 
hierarchies is been incorporated on chip, but it is 
constrained by die area and cost. Cache compression is one 
such technique; data in last-level on chip caches, e.g., L2 
resulting in larger usable caches. However past work did 

not demonstrate whether the proposed compression and 
decompression hardware is appropriate for cache 
compression, considering the performance, area and power 
consumption requirements. This paper addresses the 
increasingly important issue of controlling off-chip 
communication in computer systems in order to maintain 
good performance and energy efficiency. 

Cache compression presents several challenges. First, 
decompression and compression must be extremely fast: a 
significant increase in cache hit latency will overwhelm the 
advantages of reduced cache miss rate. This requires an 
efficient on-chip decompression hardware implementation. 
Second, the hardware should occupy little area compared to 
the corresponding decrease in the physical size of the cache, 
and should not substantially increase the total chip power 
consumption. Third, the algorithm should lossless compress 
small blocks, e.g., 64-byte cache lines, while maintaining a 
good compression ratio (throughout this paper we use the 
term compression ratio to denote the ratio of the 
compressed data size over the original data size). 
Conventional compression algorithm quality metrics, such 
as block compression ratio, are not appropriate for judging 
quality in this domain. Instead, one must consider the 
effective system wide compression ratio .This paper will 
point out a number of other relevant quality metrics for 
cache compression algorithms, some of which are new. 
Finally, cache compression should not increase power 
consumption substantially. The above requirements prevent 
the use of high-overhead compression algorithms such as 
the PPM family of algorithms [4] or Burrows-Wheeler 
transforms [5]. A faster and lower-overhead technique is 
required. 

 
II. RELATED WORK AND CONTRIBUTIONS 

Researchers have assumed the use of general purpose 
main memory compression hardware for cache 
compression. IBM’s MXT (Memory Expansion 
Technology) [6]. It’s a hardware memory 
compression/decompression technique that improves the 
performance of servers via increasing the usable size of off-
chip main memory. Data are compressed in main memory 
and decompressed when moved from main memory to the 
off-chip shared L3 cache. Memory management hardware 
dynamically allocates storage in small sectors to 
accommodate storing variable-size compressed data block 
without the need for garbage collection. IBM reports 
compression ratios (compressed size divided by 
uncompressed size) ranging from 16% to 50%.  
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X-Match is a dictionary-based compression algorithm. 
It matches 32-bit words using a content addressable 
memory that allows partial matching with dictionary entries 
and outputs variable-size encoded data that depends on the 
type of match. To improve coding efficiency, it also uses a 
move-to-front coding strategy and represents smaller 
indexes with fewer bits. Although appropriate for com- 
pressing main memory, such hardware usually has a very 
large block which is inappropriate for compressing cache 
lines. It is shown that for X-Match and two variants of 
Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the compression 
ratio for memory data deteriorates as the block size 
becomes smaller [7]. For example, when the block size 
decreases from 1 KB to 256 B, the compression ratio for 
LZ1 and X-Match increase by 11% and 3%. It can be 
inferred that the amount of increase in compression ratio 
could be even larger when the block size decreases from 
256 B to 64 B. In addition, such hardware has performance, 
area, or power consumption costs that contradict its use in 
cache compression.  

 
Other work proposes special-purpose cache 

compression hardware and evaluates only the compression 
ratio, disregarding other important criteria such as area and 
power consumption costs. Frequent pattern compression 
(FPC) [8] compresses cache lines at the L2 level by storing 
common word patterns in a compressed format. Patterns are 
differentiated by a 3-bit prefix. Cache lines are compressed 
to predetermined sizes that never exceed their original size 
to reduce decompression overhead. Based on logical effort 
analysis [9], for a 64-byte cache line, compression can be 
completed in three cycles and decompression in five cycles, 
assuming 12 fan-out-four (FO4) gate delays per cycle. To 
the best of my knowledge, there is no register transfer level 
hardware implementation or FPGA implementation of FPC 
power consumption, and area overheads are unknown. 
However, without a cache compression algorithm and 
hardware implementation designed and evaluated for 
effective system-wide compression ratio, hardware 
overheads, and interaction with other portions of the cache 
compression system, one cannot reliably determine whether 
the proposed architectural schemes are beneficial.  

 
In this paper a lossless compression algorithm is been 

proposed and developed. The algorithm is named C-Pack, 
for on-chip cache compression. The main contributions of 
this work are as follows.  
1) C-Pack targets on-chip cache compression. It permits a 

good compression ratio even when used on small cache 
lines. The performance, area, and power consumption 
overheads are low enough for practical use. 

2) When cache compression algorithm is implemented 
using FPGA, performance and power requirements can 
be easily analyzed.  

3) C-pack makes a pair of compressed lines to fit into a 
single uncompressed cache line. 

 4) The proposed hardware can be easily adapted to other 
high-performance lossless compression applications. 

 
 
 

III. CACHE COMPRESSION ARCHITECTURE 
Here consider private on-chip L2 cache is considered, 

because in contrast to a shared L2 cache, the design styles 
of private L2 caches remain consistent, when the number of 
processor cores increases. Fig. 1 gives an overview of a 
system architecture where compression is used. Processor 
has private L1 and L2 caches. L1 cache is subdivided into 
two parts to show separate code and data memory. L2 cache 
is unified in nature. Hence L2 cache is considered for this 
work. The main point that can be considered here is that no 
architectural changes are needed to be done in processor to 
implement the proposed techniques for a L2 cache.  

 
 

 
 
 

 
This algorithm used for compression and 

decompression of the data commonly found in 
microprocessor low-level on-chip caches, e.g., L2 caches. 
C-Pack which has several advantages as mentioned. Those 
are C-pack algorithm requires hardware that can 
de/compress a word in only a few CPU clock cycles. This 
rules out software implementations and has great influence 
on compression algorithm design. Cache compression 
algorithm is lossless to maintain correct microprocessor 
operation. The complexity of managing the locations of 
cache lines after compression influences feasibility.  

It achieves a good compression ratio when used to 
compress data commonly found in microprocessor low-
level on-chip caches, e.g., L2 caches. Its design was 
strongly influenced by prior work on pattern based partial 
dictionary match compression [11]. However, this prior 
work was designed for software based main memory 
compression and did not consider hardware 
implementation. C-Pack achieves compression by two 
means: (1) it uses statically decided, compact encodings for 
frequently appearing data words and (2) it encodes using a 
dynamically updated dictionary allowing adaptation to 
other frequently appearing words.  

 

Fig-1: System Architecture in which cache compression is used 
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DICTIONARY 
 

 
 

The dictionary supports partial word matching as well as 
full word matching. 

i. C-Pack Compression Algorithm 

 
Fig 2: C-Pack Compression 

 

The patterns and coding schemes used by C-Pack 
are summarized in Table I. The ‘Pattern’ column describes 
frequently appearing patterns, where ‘z’ represents a zero 
byte, ‘m’ represents a byte matched against a dictionary 
entry, and ‘x’ represents an unmatched byte. In the ‘Output’ 
column, ‘B’ represents a byte and ‘b’ represents a bit. The 
C-Pack compression algorithms are illustrated in Fig. 2. 
Here use an input of two words per cycle as in Fig. 2. 
However, the algorithm can be easily extended to cases 
with one, or more than two, words per cycle. During one 
iteration, each word is first compared with patterns “zzzz” 
and “zzzx”. If there is a match, the compression output is 
produced by combining the corresponding code and 
unmatched bytes as indicated in Table I. Otherwise; the 

compressor compares the word with all dictionary entries 
and finds the one with the most matched bytes. The 
compression result is then obtained by combining code, 
dictionary entry index, and unmatched bytes, if any. Words 
that fail pattern matching are pushed into the dictionary. 
Fig. 3 shows the compression results for several different 
input words. In each output, the code and the dictionary 
index, if any, are enclosed in parentheses. Although we 
used an 8-word dictionary in Fig. 3 for illustration, the 
dictionary size is set to 64 B in our implementation. Note 
that the dictionary is updated after each word insertion, 
which is not shown in Fig. 3. 

Table-I: Pattern Encoding for C-pack 
 

 The Compression simulation results for the given 
original data are shown in the figure 4.  

 

 
Fig. 4: Simulation results for compression 

HFFFFFFF 3527894E 000756AB 12345678 AAAAAAAA 12340000 BBBB2022 VMVGRCEV 

Code Pattern Output Length(b) 
00 zzzz (00) 2 
01 xxxx (01)BBBB 34 
10 mmmm (10)bbbb 6 

1100 mmxx (1100)bbbbBB 24 
1101 zzzx (1101)B 12 
1110 mmmx (1110)bbbbB 16 
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Parallel design allows an efficient hardware 
implementation, in which pattern matching, dictionary 
matching, and processing multiple words are all done 
simultaneously. 

ii. C-Pack Decompression Algorithm 

 
Fig 5: C-Pack Decompression 

iii. Effective System-Wide Compression Ratio 
During decompression, the decompression first reads 

compressed words is shown in figure 5.It extracts the codes 
for analyzing the patterns of each word, which are then 
compared against the codes defined in Table I. If the code 
indicates a pattern match, the original word is recovered by 
combining zeroes and unmatched bytes, if any. Otherwise, 
the decompression output is given by combining bytes from 
the input word with bytes from dictionary entries, if the 
code indicates a dictionary match. Decompression 
simulation results for the give compressed data are shown 
in the figure 6.  

The C-Pack algorithm is designed specifically for 
hardware implementation. It takes advantage of 
simultaneous comparison of an input word with multiple 
potential patterns and dictionary entries. This allows rapid 
execution with good compression ratio in a hardware 
implementation, but may not be suitable for a software 
implementation. Software implementations commonly 
serialize operations. For example, matching against 
multiple patterns can be prohibitively expensive for 
software implementations when the number of patterns or 
dictionary entries is large. C-Pack’s inherently parallel 
design allows an efficient hardware implementation, in 
which pattern matching, dictionary matching, and 
processing multiple words are all done simultaneously. 

 

 
Fig. 6: Simulation results for decompression 

 

Compressed cache organization is a difficult task 
because different compressed cache lines may have 
different lengths. Researchers have proposed numerous line 
segmentation techniques [2], [3], [10] to handle this 
problem. The main idea is to divide compressed cache lines 
into fixed-size segments and use indirect indexing to locate 
all the segments for a compressed line. 

The effective system-wide compression ratio is defined 
as the average of the effective compression ratios of all 
cache lines in a compressed cache. It indicates how well a 
compression algorithm performs for pair matching based 
cache compression. The concept of effective compression 
ratio can also be adapted to a segmentation based approach. 
For example, for a cache line with 4 fixed-length segments, 
a compressed line has an effective compression ratio of 
25% when it takes up one segment, 50% for two segments, 
and so on. In this paper, reduce the effective system-wide 
compression ratio for better high performance of 
microprocessor. 

CONCLUSION 
Code compression algorithm for high performance of 

microprocessor is presented to reduce the compression ratio 
in this work. The algorithm is based on pattern matching 
and partial dictionary coding. Its hardware implementation 
permits parallel compression of multiple words without 
degradation of dictionary match probability. The proposed 
architecture is defined in verilog HDL and simulated using 
Modelsim. The Code is synthesized using Xilinx XST tool 
and implemented using FPGA Spartan 3E starter kit. The 
proposed algorithm yields an effective system-wide 
compression ratio of 41.25%, and permits a hardware 
implementation with a maximum decompression latency of 
6.67 ns in 65 nm process technology. It can also be used in 
other high-performance lossless data compression 
applications with few or no modifications. 
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