
Code Compression Algorithm for High
Performance Micro Processor

S.Sekhar dileep kumar, K.Rakesh

Dept. of ECE, MVGR College of Engineering,
Vizianagaram, Andhra Pradesh, India

Abstract— Modern processors use two or more levels of
cache memories to bridge the rising disparity between
processor and memory speeds. Microprocessor
designers have been torn between tight constraints on
the amount of on-chip cache memory and the high
latency of off-chip memory, such as dynamic random
access memory. Accessing off-chip memory generally
takes an order of magnitude more time than accessing
on-chip cache, and two orders of magnitude more time
than executing an instruction. Compression can
improve cache performance by increasing effective
cache capacity and eliminating misses. Computer
systems and micro architecture researchers have
proposed using hardware data compression units within
the memory hierarchies of microprocessors in order to
improve performance, energy efficiency, and
functionality. However, most past work, and all work on
cache compression, has made unsubstantiated
assumptions about the performance, power
consumption, and area overheads of the proposed
compression algorithms and hardware .In this paper a
lossless compression algorithm designed for fast on-line
data compression, and cache compression in particular
is proposed. The algorithm has a number of novel
features tailored for this application, including
combining pairs of compressed lines into one cache line
and allowing parallel compression of multiple words
while using a single dictionary and without degradation
in compression ratio. The algorithm is proposed to a
register transfer level hardware design, permitting
performance, power consumption, and area estimation.
The cache compression is evaluated using full-system
simulation and a range of benchmarks. It can be shown
that compression can improve performance for
memory-intensive commercial workloads.

Index Terms— Cache compression, effective system-
wide compression ratio, hardware implementation, pair
matching, parallel compression.

I. INTRODUCTION
More time is essential to access off-chip memory time

required to access generally takes an accessing on-chip
cache. Hence to improve memory system efficiency cache
hierarchies is been incorporated on chip, but it is
constrained by die area and cost. Cache compression is one
such technique; data in last-level on chip caches, e.g., L2
resulting in larger usable caches. However past work did

not demonstrate whether the proposed compression and
decompression hardware is appropriate for cache
compression, considering the performance, area and power
consumption requirements. This paper addresses the
increasingly important issue of controlling off-chip
communication in computer systems in order to maintain
good performance and energy efficiency.

Cache compression presents several challenges. First,
decompression and compression must be extremely fast: a
significant increase in cache hit latency will overwhelm the
advantages of reduced cache miss rate. This requires an
efficient on-chip decompression hardware implementation.
Second, the hardware should occupy little area compared to
the corresponding decrease in the physical size of the cache,
and should not substantially increase the total chip power
consumption. Third, the algorithm should lossless compress
small blocks, e.g., 64-byte cache lines, while maintaining a
good compression ratio (throughout this paper we use the
term compression ratio to denote the ratio of the
compressed data size over the original data size).
Conventional compression algorithm quality metrics, such
as block compression ratio, are not appropriate for judging
quality in this domain. Instead, one must consider the
effective system wide compression ratio .This paper will
point out a number of other relevant quality metrics for
cache compression algorithms, some of which are new.
Finally, cache compression should not increase power
consumption substantially. The above requirements prevent
the use of high-overhead compression algorithms such as
the PPM family of algorithms [4] or Burrows-Wheeler
transforms [5]. A faster and lower-overhead technique is
required.

II. RELATED WORK AND CONTRIBUTIONS

Researchers have assumed the use of general purpose
main memory compression hardware for cache
compression. IBM’s MXT (Memory Expansion
Technology) [6]. It’s a hardware memory
compression/decompression technique that improves the
performance of servers via increasing the usable size of off-
chip main memory. Data are compressed in main memory
and decompressed when moved from main memory to the
off-chip shared L3 cache. Memory management hardware
dynamically allocates storage in small sectors to
accommodate storing variable-size compressed data block
without the need for garbage collection. IBM reports
compression ratios (compressed size divided by
uncompressed size) ranging from 16% to 50%.

S.Sekhar dileep kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4495 - 4498

4495

X-Match is a dictionary-based compression algorithm.
It matches 32-bit words using a content addressable
memory that allows partial matching with dictionary entries
and outputs variable-size encoded data that depends on the
type of match. To improve coding efficiency, it also uses a
move-to-front coding strategy and represents smaller
indexes with fewer bits. Although appropriate for com-
pressing main memory, such hardware usually has a very
large block which is inappropriate for compressing cache
lines. It is shown that for X-Match and two variants of
Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the compression
ratio for memory data deteriorates as the block size
becomes smaller [7]. For example, when the block size
decreases from 1 KB to 256 B, the compression ratio for
LZ1 and X-Match increase by 11% and 3%. It can be
inferred that the amount of increase in compression ratio
could be even larger when the block size decreases from
256 B to 64 B. In addition, such hardware has performance,
area, or power consumption costs that contradict its use in
cache compression.

Other work proposes special-purpose cache

compression hardware and evaluates only the compression
ratio, disregarding other important criteria such as area and
power consumption costs. Frequent pattern compression
(FPC) [8] compresses cache lines at the L2 level by storing
common word patterns in a compressed format. Patterns are
differentiated by a 3-bit prefix. Cache lines are compressed
to predetermined sizes that never exceed their original size
to reduce decompression overhead. Based on logical effort
analysis [9], for a 64-byte cache line, compression can be
completed in three cycles and decompression in five cycles,
assuming 12 fan-out-four (FO4) gate delays per cycle. To
the best of my knowledge, there is no register transfer level
hardware implementation or FPGA implementation of FPC
power consumption, and area overheads are unknown.
However, without a cache compression algorithm and
hardware implementation designed and evaluated for
effective system-wide compression ratio, hardware
overheads, and interaction with other portions of the cache
compression system, one cannot reliably determine whether
the proposed architectural schemes are beneficial.

In this paper a lossless compression algorithm is been

proposed and developed. The algorithm is named C-Pack,
for on-chip cache compression. The main contributions of
this work are as follows.
1) C-Pack targets on-chip cache compression. It permits a

good compression ratio even when used on small cache
lines. The performance, area, and power consumption
overheads are low enough for practical use.

2) When cache compression algorithm is implemented
using FPGA, performance and power requirements can
be easily analyzed.

3) C-pack makes a pair of compressed lines to fit into a
single uncompressed cache line.

 4) The proposed hardware can be easily adapted to other
high-performance lossless compression applications.

III. CACHE COMPRESSION ARCHITECTURE
Here consider private on-chip L2 cache is considered,

because in contrast to a shared L2 cache, the design styles
of private L2 caches remain consistent, when the number of
processor cores increases. Fig. 1 gives an overview of a
system architecture where compression is used. Processor
has private L1 and L2 caches. L1 cache is subdivided into
two parts to show separate code and data memory. L2 cache
is unified in nature. Hence L2 cache is considered for this
work. The main point that can be considered here is that no
architectural changes are needed to be done in processor to
implement the proposed techniques for a L2 cache.

This algorithm used for compression and

decompression of the data commonly found in
microprocessor low-level on-chip caches, e.g., L2 caches.
C-Pack which has several advantages as mentioned. Those
are C-pack algorithm requires hardware that can
de/compress a word in only a few CPU clock cycles. This
rules out software implementations and has great influence
on compression algorithm design. Cache compression
algorithm is lossless to maintain correct microprocessor
operation. The complexity of managing the locations of
cache lines after compression influences feasibility.

It achieves a good compression ratio when used to
compress data commonly found in microprocessor low-
level on-chip caches, e.g., L2 caches. Its design was
strongly influenced by prior work on pattern based partial
dictionary match compression [11]. However, this prior
work was designed for software based main memory
compression and did not consider hardware
implementation. C-Pack achieves compression by two
means: (1) it uses statically decided, compact encodings for
frequently appearing data words and (2) it encodes using a
dynamically updated dictionary allowing adaptation to
other frequently appearing words.

Fig-1: System Architecture in which cache compression is used

S.Sekhar dileep kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4495 - 4498

4496

DICTIONARY

The dictionary supports partial word matching as well as
full word matching.

i. C-Pack Compression Algorithm

Fig 2: C-Pack Compression

The patterns and coding schemes used by C-Pack
are summarized in Table I. The ‘Pattern’ column describes
frequently appearing patterns, where ‘z’ represents a zero
byte, ‘m’ represents a byte matched against a dictionary
entry, and ‘x’ represents an unmatched byte. In the ‘Output’
column, ‘B’ represents a byte and ‘b’ represents a bit. The
C-Pack compression algorithms are illustrated in Fig. 2.
Here use an input of two words per cycle as in Fig. 2.
However, the algorithm can be easily extended to cases
with one, or more than two, words per cycle. During one
iteration, each word is first compared with patterns “zzzz”
and “zzzx”. If there is a match, the compression output is
produced by combining the corresponding code and
unmatched bytes as indicated in Table I. Otherwise; the

compressor compares the word with all dictionary entries
and finds the one with the most matched bytes. The
compression result is then obtained by combining code,
dictionary entry index, and unmatched bytes, if any. Words
that fail pattern matching are pushed into the dictionary.
Fig. 3 shows the compression results for several different
input words. In each output, the code and the dictionary
index, if any, are enclosed in parentheses. Although we
used an 8-word dictionary in Fig. 3 for illustration, the
dictionary size is set to 64 B in our implementation. Note
that the dictionary is updated after each word insertion,
which is not shown in Fig. 3.

Table-I: Pattern Encoding for C-pack

 The Compression simulation results for the given
original data are shown in the figure 4.

Fig. 4: Simulation results for compression

HFFFFFFF 3527894E 000756AB 12345678 AAAAAAAA 12340000 BBBB2022 VMVGRCEV

Code Pattern Output Length(b)
00 zzzz (00) 2
01 xxxx (01)BBBB 34
10 mmmm (10)bbbb 6

1100 mmxx (1100)bbbbBB 24
1101 zzzx (1101)B 12
1110 mmmx (1110)bbbbB 16

S.Sekhar dileep kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4495 - 4498

4497

Parallel design allows an efficient hardware
implementation, in which pattern matching, dictionary
matching, and processing multiple words are all done
simultaneously.

ii. C-Pack Decompression Algorithm

Fig 5: C-Pack Decompression

iii. Effective System-Wide Compression Ratio
During decompression, the decompression first reads

compressed words is shown in figure 5.It extracts the codes
for analyzing the patterns of each word, which are then
compared against the codes defined in Table I. If the code
indicates a pattern match, the original word is recovered by
combining zeroes and unmatched bytes, if any. Otherwise,
the decompression output is given by combining bytes from
the input word with bytes from dictionary entries, if the
code indicates a dictionary match. Decompression
simulation results for the give compressed data are shown
in the figure 6.

The C-Pack algorithm is designed specifically for
hardware implementation. It takes advantage of
simultaneous comparison of an input word with multiple
potential patterns and dictionary entries. This allows rapid
execution with good compression ratio in a hardware
implementation, but may not be suitable for a software
implementation. Software implementations commonly
serialize operations. For example, matching against
multiple patterns can be prohibitively expensive for
software implementations when the number of patterns or
dictionary entries is large. C-Pack’s inherently parallel
design allows an efficient hardware implementation, in
which pattern matching, dictionary matching, and
processing multiple words are all done simultaneously.

Fig. 6: Simulation results for decompression

Compressed cache organization is a difficult task
because different compressed cache lines may have
different lengths. Researchers have proposed numerous line
segmentation techniques [2], [3], [10] to handle this
problem. The main idea is to divide compressed cache lines
into fixed-size segments and use indirect indexing to locate
all the segments for a compressed line.

The effective system-wide compression ratio is defined
as the average of the effective compression ratios of all
cache lines in a compressed cache. It indicates how well a
compression algorithm performs for pair matching based
cache compression. The concept of effective compression
ratio can also be adapted to a segmentation based approach.
For example, for a cache line with 4 fixed-length segments,
a compressed line has an effective compression ratio of
25% when it takes up one segment, 50% for two segments,
and so on. In this paper, reduce the effective system-wide
compression ratio for better high performance of
microprocessor.

CONCLUSION
Code compression algorithm for high performance of

microprocessor is presented to reduce the compression ratio
in this work. The algorithm is based on pattern matching
and partial dictionary coding. Its hardware implementation
permits parallel compression of multiple words without
degradation of dictionary match probability. The proposed
architecture is defined in verilog HDL and simulated using
Modelsim. The Code is synthesized using Xilinx XST tool
and implemented using FPGA Spartan 3E starter kit. The
proposed algorithm yields an effective system-wide
compression ratio of 41.25%, and permits a hardware
implementation with a maximum decompression latency of
6.67 ns in 65 nm process technology. It can also be used in
other high-performance lossless data compression
applications with few or no modifications.

REFERENCES

[1] Xi Chen, Lei Yang, Robert P. Dick,, “C-Pack: A High-Performance
Microprocessor Cache Compression Algorithm” IEEE Trans. Commun. ,
vol. 18, no. 08, Aug. 2010.
[2] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high performance processors,” in Proc. Int. Symp. Computer Architecture,
pp. 212–223, Jun. 2004
[3] E. G. Hallnor and S. K. Reinhardt, “A compressed memory hierarchy
using an indirect index cache,” in Proc. Workshop Memory Performance
Issues, pp. 9–15, 2004,
[4] A. Moffat, “Implementing the PPM data compression scheme,” IEEE
Trans. Commun. , vol. 38, no. 11, pp. 1917–1921, Nov. 1990.
[5] M. Burrows and D. Wheeler, “A block sorting lossless data
compression algorithm,” Digital Equipment Corporation, Tech. Rep. 124,
1994.
[6] B. Tremaine et al., “IBM memory expansion technology,” IBM J. Res.
Development, vol. 45, no. 2, pp. 271–285, Mar. 2001.
[7] J. L. Núñez and S. Jones, “Gbit/s lossless data compression hardware,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3, pp.
499–510, Jun. 2003.
[8] A. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance- based compression scheme for 12 caches,” Dept. Comp. Scie.
, Univ. Wisconsin- Madison, Tech. Rep. 1500, Apr. 2004.
[9] I. Sutherland, R. F. Sproull, and D. Harris, Logical Effort: Designing
Fast CMOS Circuits, 1st ed. San Diego, CA: Morgan Kaufmann, 1999.
[10] J.-S. Lee et al., “Design and evaluation of a selective compressed
memory system,” in Proc. Int. Conf. Computer Design, pp. 184–191, Oct.
1999.
[11] L. Yang, H. Lekatsas, and R. P. Dick, “High-performance operating
system controlled memory compression,” in Proc. Design Automation
Conf., Jul. 2006, pp. 701–704.

S.Sekhar dileep kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4495 - 4498

4498

